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Abstract. Cauchy's use of in�nitesimals in de�ning key concepts
of analysis and geometry such as continuity and center of curvature
has been re-examined recently by Bªaszczyk et al., Borovik et al.,
Bråting, Katz & Katz, and others. Were Cauchy's in�nitesimals
potential or actual?

With the advent of modern mathematical theories of actual in-
�nitesimals, one can formally compare the notion of potential and
actual in�nitesimal. Is there a theory of continuum that expresses
the relationship between these two concepts? Are such theories
su�ciently powerful for a Leibnizian law of continuity to hold? In
non-standard analysis, such questions are only partially answered
by the works of Robinson, Lakatos, Cleave, Cutland et al., and
Laugwitz concerning Cauchy's notion of in�nitesimal.

We seek to answer such questions in two ways. The �rst ap-
proach is a critical revision of the non-standard approach, keeping
in mind a working dichotomy between these two types of in�nites-
imals and a Leibnizian law for continuous relations. The second
approach leads to nilpotent in�nitesimals and a Leibnizian law in
intuitionistic logic.
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1. Introduction

The distinction between potential and actual in�nity is somewhat
puzzling to a modern reader. Such a distinction has been a common
theme in philosophical commentary on in�nity starting with Aristotle
or even earlier. Yet the distinction does not lend itself easily to for-
malisation in the commonly accepted foundation for mathematics in
the context of Zermelo�Fraenkel set theory. We will investigate such a
distinction in the context of Cauchy's foundational work on in�nitesi-
mals.
Cauchy de�ned an in�nitesimal in terms of variable quantities. More

precisely, he wrote that a variable quantity becomes an in�nitesimal if
its values become arbitrarily small. Cauchy speci�cally points out that
the limit of such a quantity is 0. Thus, the primitive notion in Cauchy's
approach in one of a variable quantity, and both in�nitesimals and
limits are de�ned in terms of it. The meaning of the term �becomes�
is subject to controversy. Some speculations on this subject may be
found in Borovik & Katz [3]. At any rate, what is clear is that Cauchy
never considered sequences other than null sequences when he wished
to generate an in�nitesimal. The only explicit example he gives of an
in�nitesimal is a (mildly non-monotone) null sequence. Having chosen
a base in�nitesimal, Cauchy proceeds to de�ne in�nitesimals of higher
orders in terms of the base in�nitesimal. All in�nitesimals so generated
are therefore de�ned by null sequences.

2. Potential and actual infinitesimals

In this section we propose a formalisation of the distinction between
potential and actual in�nitesimals. A general formal approach to actual
in�nitesimals is given by the following de�nition.

De�nition 1. Let (B,+, ·,≤) be a preordered (unital) ring1 and let
a ∈ B. We say that a is an actual in�nitesimal in (B,+, ·,≤), and
write a ' 0, if

∀n ∈ N : −1 < na < 1.

1That is, the relation ≤ is symmetric and transitive, but not necessarily anti-
symmetric, as in Smooth In�nitesimal Analysis, see e.g., J. Bell [1].
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The ring B is said to be Bernoullian if it contains at least one nonzero
actual in�nitesimal.

The term Bernoullian refers to Johann Bernoulli, who, having learned
an in�nitesimal methodology from Leibniz, never wavered from it. If
classical logic is adopted at the meta-mathematical level, this term is
equivalent to non-Archimedean.
For example, the ring of dual numbers B = R[ε]/(ε2 = 0) equipped

with the ordering

a+ εb ≤ α + εβ i� a ≤ α

is a Bernoullian ring with ε serving as a nonzero nilpotent in�nitesimal
since ε2 = 0. Note that we have both ε ≤ 0 and ε ≥ 0 even if ε 6= 0.

De�nition 2. A potential in�nitesimal is a null sequence p = (pn)n∈N,
i.e., a map p : N −→ R satisfying limn→∞ pn = 0.

A Bernoullian ring is typically constructed starting from a subset
S ⊆ RN of the collection RN of real sequences, and forming a quotient

B = S/∼
by a suitable equivalence relation ∼. There is therefore a natural link
between actual and potential in�nitesimals, given by the natural pro-
jection

π : p ∈ S 7→ a = [p]∼ ∈ B.
In an abstract form, the relationship between potential and actual in-
�nitesimals can assume two forms, one stronger than the other. In the
�rst form, every actual in�nitesimal always has at least one represen-
tative sequence which is a potential in�nitesimal. In the second form,
every representative sequence is required to be a potential in�nitesimal.
We formalize this distinction as follows.

De�nition 3. Let (B,+, ·,≤) be a Bernoullian ring, let S ⊆ RN be a
collection of real sequences, and let π : S −→ B be a surjective map.
We say that in B every in�nitesimal is accessible if

∀a ∈ B
[
a ' 0 ⇒ ∃p ∈ S : π(p) = a and lim

n→+∞
pn = 0

]
. (2.1)

Meanwhile, we say that in B every in�nitesimal is strongly accessible
if

∀a ∈ B ∀p ∈ S
[
a ' 0 , π(p) = a ⇒ lim

n→+∞
pn = 0

]
. (2.2)

Note that since π is surjective, condition (2.2) is stronger than condition
(2.1).
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3. Cauchy's infinitesimals: a modern viewpoint

Robinson [20] explored the possibility of using Nonstandard Analysis
to interpret Cauchy's so-called �mistake� concerning convergent series
of continuous functions. Robinson's approach can be thought of as an
investigation of the formal relationship between potential and actual
in�nitesimals.
The work of Lakatos [15], Cleave [4], [5], Cutland et al. [6], and

Laugwitz [16] sought to clarify this question. The notion of an acces-
sible in�nitesimal is essentially due to Cleave [4]. Cutland et al. [6]
showed that a P-point ultra�lter is required in order to prove that ev-
ery in�nitesimal in the hyperreal �eld ∗R is accessible (but not strongly
accessible). Indeed, there are models of ∗R = RN/F containing in-
�nitesimals a ∈ ∗R which are not accessible, i.e., such that whenever
we consider a representative sequence p ∈ RN so that a = [p]∼, the
sequence p does not tend to zero.2 In such model of the hyperreal �eld,
the interaction between potential and actual in�nitesimals leaves to be
desired. As Cleave wrote,

The inaccessible in�nitesimals are rather elusive entities
� they appear to have no role to play in analysis. The
natural way of showing the existence of in�nitesimals
with certain properties is actually to construct a null
variable [sequence] (Cleave 1972 [4]).

Moreover, the existence of a P-point ultra�lter cannot be proved in
ZFC, that is using the usual axioms of set theory plus the axiom of
choice. Assuming the continuum hypothesis or Martin's axiom and
using trans�nite induction, it is possible to prove the existence of a
P-point. See Cutland et al. [6] and references therein for more details
on this foundational wrinkle.
The main question of the present work is therefore whether it is pos-

sible to construct a su�ciently powerful Bernoullian ring (a model of an
in�nitesimal-enriched continuum) where every in�nitesimal is strongly
accessible, i.e., where the interaction between potential and actual in-
�nitesimals is more satisfactory. Here �su�ciently powerful� means a
model where at least some nontrivial form of Leibniz's law of continuity
holds. An example of an insu�ciently powerful ring is the ring of dual
numbers mentioned above.

2For an inaccessible in�nitesimal, a representing sequence will not even tend to
zero along any subsequence supported on a set of indices which is a member of the
ultra�lter used in the construction of ∗R.
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In the �rst part of this text, we will use a simple ultrapower con-
struction, but we take advantage of this to critically analyze this con-
struction: which desired properties force us to consider an ultra�lter?
Is this construction always intuitively clear? To obtain Leibniz's law,
are we forced to consider an ultra�lter? Can we state Leibniz's law
without having a background in formal Logic?
In the second part of this text, we will not use an ultrapower, but we

will nonetheless arrive at a Bernoullian ring where every in�nitesimal is
strongly accessible. However, this second approach produces nilpotent
in�nitesimals and a form of Leibniz's law in intuitionistic logic. In spite
of the completely di�erent �nal results, the basic idea for the construc-
tion of a new model of the continuum is very similar, as explained in
the next section.

4. The basic idea

Cantor's completion of the rationals resulting in the �eld of real
numbers proceeds by quotienting the collection C ⊂ QN of all Cauchy
sequences of rational numbers by Cauchy's equivalence relation. Sim-
ilarly, the collection C ⊂ RN of all Cauchy sequences of real numbers
projects to the Archimedean continuum R:

C lim−→ R. (4.1)

The corresponding equivalence relation,

u ∼C v i� lim
n→∞

|un − vn| = 0,

�collapses� all null sequences to a single point 0 ∈ R. Is there another
way to de�ne an equivalence relation ∼ on C that would allow some
null sequences to retain their distinct identity? In other words, can one
re�ne Cantor's equivalence relation among Cauchy sequences, in such
a way as not to �collapse� all null sequences to zero?
The idea, roughly, is to seek to retain some information in the quo-

tient about the rate of convergence of a typical sequence. Then, rela-
tive to the new equivalence relation ∼, a null sequence of reals would
become an actual in�nitesimal. In other words, we are searching for
a new notion of �completion�, with respect to which the real �eld R
can be completed by the addition of in�nitesimals. What one seeks
is an intermediate stage, B := C/∼ (or, more generally, a quotient
B = S/∼, where S ⊆ C), in the projection (4.1), which would repre-
sent an in�nitesimal-enriched continuum as in Figure 4.1.
Here, if [u]∼ is the equivalence class of a sequence u, then the function

st : B → R,
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Figure 4.1. Factoring Cantor's map C → R

de�ned by

st([u]∼) := lim
n→+∞

un ∈ R

is the usual limit of a Cauchy sequence u = (un)n∈N ∈ C. This function
represents the standard part of [u]∼ ∈ B, that is a standard real number
in�nitely close to the new number [u]∼ ∈ B. The most natural way
to obtain a ring structure on B is to de�ne the equivalence relation
∼ so that it preserves pointwise sums and products. We expect B
to be only a ring rather than a �eld, because it cannot contain the

pointwise inverse
(

1
un

)
n∈N

of an in�nitesimal [un], since the inverse is

not a Cauchy sequence.

5. A possible approach with invertible infinitesimals

To implement the ideas outlined in Section 4, a possible approach
is to declare two Cauchy sequences u, v ∈ C to be equivalent if they
coincide on a �dominant� set of indices in N:

u ∼ v ⇐⇒ {n ∈ N |un = vn} is dominant. (5.1)

For simplicity, we will use the symbol [u] for the equivalence class [u]∼
generated by u ∈ C.
What is �dominant�?3 A �nite set in N is never dominant; every

co�nite set (i.e., set with �nite complement) is necessarily dominant,
and we also expect the property that the superset of a dominant set
is dominant, as well. Moreover, we wish the relation (5.1) to yield
an equivalence relation. In particular, the validity of the transitive

3For the reader already familiar with the usual ultrapower construction of the
hyperreal �eld, it is clear how to formalize the idea of a dominant subset of N, but
to critically analyze this well known construction, in the following we assume that
the reader is not even familiar with the notion of ultra�lter. Of course, we are not
claiming that this is an alternative approach to ∗R useful for teaching, because our
construction is too tied to our analysis of the relationships between potential and
actual in�nitesimals.
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property for generic Cauchy sequences implies that the intersection of
two dominant sets is dominant. In fact, let us assume that

(∀u, v, w ∈ C) (u ∼ v ∧ v ∼ w ⇒ u ∼ w) . (5.2)

Then, if sets A and B of indices are dominant, it su�ces to take4

un :=

{
1 if n ∈ A
1− 1

n+1
if n ∈ N \ A

wn :=

{
1 if n ∈ B
1 + 1

n+1
if n ∈ N \B

to have that u ∼ 1 and 1 ∼ w so that u ∼ w from (5.2). This means
that {n ∈ N |un = wn} = A∩B is dominant. Conversely, if our family
of dominant sets is closed with respect to �nite intersections, then ∼
is an equivalence relation. For example, the family of all co�nite sets

F := {S ⊆ N |N \ S is �nite} ,
the so-called Frechet �lter, satis�es all the conditions we have imposed,
up till now, on dominant sets. These conditions de�ne the notion of a
�lter on the set N (extending the Frechet �lter).
It is easy to prove that the equivalence relation ∼ preserves pointwise

operations

[u] + [v] :=
[
(un + vn)n∈N

]
and [u] · [v] :=

[
(un · vn)n∈N

]
(5.3)

so that fR := C/∼ becomes a ring. The upper left index `f' in the
symbol fR alludes to the fact that in this ring there are no in�nite
numbers, but only �nite ones. Whether or not fR is an integral domain
depends on the choice of the �lter of dominant sets. Note that the
relation as in (5.1) is a re�nement of the usual Cauchy relation ∼C.
Indeed, if u, v ∈ C coincide on a dominant set A, then we have uσn −
vσn = 0 for some subsequence σ : N → N (enumerating the members
of the set A). It follows that u ∼C v since u and v converge. Of course,
the relation ∼ is a strict re�nement because if we take un = 1

n
and

vn = 0, then u ∼C v but the collection {n ∈ N |un = vn} = ∅ is the
empty set, which is never dominant.
Whether or not the idea expressed by the notion of a dominant set

as in (5.1) can be considered �natural� is a matter of opinion. An
alternative approach would be to de�ne a new equivalence relation in
terms of the rate of convergence of the di�erence u−v. A thread going
in this direction will be presented in section 7, but here we will continue
with the approach based on (5.1). If one accepts this idea, then it is
also natural to de�ne an order, by setting

[u] ≥ [v] ⇐⇒ {n ∈ N |un ≥ vn} is dominant. (5.4)

4Let us note that in N we have 0 ∈ N.
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This yields an ordered ring, as one can easily check.
Is this order total? The assumption that it is total, i.e.

∀u ∈ C : [u] ≥ 0 or [u] ≤ 0, (5.5)

yields a further condition on dominant sets. In fact, if A is dominant,
then de�ning

un :=

{
1

n+1
if n ∈ A

− 1
n+1

if n ∈ N \ A

we have that A is dominant if the �rst alternative of (5.5) holds; oth-
erwise N \ A is dominant. A �lter verifying this additional condition
is called a free ultra�lter and from now on we will consider such a free
ultra�lter in our construction. Using this additional condition, we are
now also able to prove that fR is an integral domain.

Theorem 4. fR is an integral domain.

Proof. Given nonzero classes [u] 6= 0 and [v] 6= 0, both of the sets
{n ∈ N |un 6= 0} and {n ∈ N | vn 6= 0} are dominant. Therefore so is
their intersection. �

Given an integral domain, we can consider the corresponding �eld
of fractions fRfrac. Since

fR is also an ordered ring, the same structure
carries over to the quotient �eld of fractions in the usual way.

Remark 5. In a classical approach to nonstandard analysis, the equality
on a dominant set (De�nition (5.1)) is applied to arbitrary sequences,
rather than merely Cauchy sequences. Nonetheless, our �eld of frac-
tions fRfrac is isomorphic to the full hyperreal �eld ∗R of nonstandard
analysis through

[u]

[v]
∈ ∗Rfrac 7→

[(
un
vn

)
n∈N

]
U
∈ ∗R,

where [(qn)n]U is the equivalence class modulo the ultra�lter U . To
prove this, note that every sequence q ∈ RN can be written as q = u

v

for two null sequences u, v, e. g., taking un := qn · 1
e|qn|·(n+1)

and

vn := 1
e|qn|·(n+1)

. This clari�es the relationship between our fR and the

usual hyperreal �eld ∗R. It also underscores the fact that the goal of
our approach is to exhibit a Bernoullian ring where every in�nitesimal
is strongly accessible, but this splitting of ∗R into two steps

R ↪→ fR ↪→ fRfrac =
∗R

is confusing from the didactic point of view.



POTENTIAL & ACTUAL INFINITESIMALS IN MODELS OF CONTINUUM 9

In Tarski [21] we can �nd the proof, using Zorn's lemma, that the
Frechet �lter can be extended to a free ultra�lter. It is possible to
prove that some form of the axiom of choice is necessary to prove the
existence of a free ultra�lter. Yet, one consequence of exploiting this
axiom is that we don't possess detailed information about how free
ultra�lters are made. Moreover, this also implies that it is not so easy
to prove the existence of a free ultra�lter satisfying some given and
potentially useful conditions.
Admittedly, it is not easy to evaluate the idea (5.1). Thus, whatever

the example of the ultra�lter we will be able to present, it doesn't

seems su�ciently meaningful why the in�nitesimal
[(

(−1)n
n+1

)
n∈N

]
would

considered positive and not negative, or vice versa.
Moreover, examining the conditions de�ning the notion of an ultra-

�lter, one can guess that the notion of a dominant set is not that clear
intuitively. In point of fact, the technically desirable conditions about
the closure with respect to intersection and complement can lead to
counterintuitive consequences. We would have that even numbers P2

or odd numbers will be dominant (but not both). Let us suppose, e.g.,
the �rst case and continue: even numbers in P2, i.e. the set P4 of mul-
tiples of 4, or its complement N \ P4 will be dominant. In the latter
case, also P2 ∩ (N \ P4), i.e. numbers of the form 2(2n + 1), will be
dominant. In any case we would be able to �nd always a dominant set
which has �1/2 of the elements of the previous dominant set�. Con-
tinuing in this way, we can obtain a dominant set, which is intuitively
very sparse with respect to its complement. To understand this idea
a little better, let us consider that everything we said up to now can
be generalized if instead of sequences u : N → R we take functions
u : [0, 1]→ R. In other words, instead of taking our indices as integer
numbers, we take real numbers in [0, 1]. Then, we can repeat the pre-
vious reasoning considering, at each step k, subintervals of length 2−k.
Therefore, for every ε > 0, we are always able to �nd in an ultra�lter on
[0, 1] a dominant set A whose uniform probability P (A) < ε, whereas
P ([0, 1]\A) > 1−ε, even though this complement is not dominant. See
[8] for a formalization of this idea using the notion of density of subsets
of N, i.e. of �nitely additive uniform probability to pick a number from
a subset A ⊆ N.
Summarizing, we have the feeling that the idea of requiring sequences

to coincide on dominant sets, even if it seems not so clear from an
intuitive point of view, appears to be formally extremely powerful.
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Alternatively, in section 7 we will present another idea, which is intu-
itively clear but which doesn't seem equally powerful. Which thread
one wishes to follow would depend on applications envisioned.
Of course, fR is a Bernoullian ring since e.g., a = [1/(n + 1)] ∈

fR is an in�nitesimal. The following results shows that in fR every
in�nitesimal is strongly accessible, of course with respect to the natural
projection π = [−] : C −→ fR.

Theorem 6. Let [u] ∈ fR, then we have that

[u] is an actual in�nitesimal

if and only if
lim
n
un = 0.

Therefore in fR every in�nitesimal is strongly accessible.

Proof. Let us assume that [u] is in�nitesimal, then for each n ∈ N\{0},
the set

An :=

{
k ∈ N : − 1

n
< uk <

1

n

}
is dominant. Therefore, it is in�nite and we can always �nd an increas-
ing sequence k : N→ N such that kn ∈ An and kn+1 > kn. For such a
sequence we have

∀n ∈ N 6=0 : −
1

n
< ukn <

1

n
.

Thus, since u ∈ C is a Cauchy sequence, we have

lim
n→+∞

un = lim
n→+∞

ukn = 0.

To prove the converse implication, we can consider that

∀n ∈ N6=0 ∃N : ∀k ∈ N≥N :
1

n
< uk <

1

n
.

Since every co�nite set N≥N is dominant, this prove that [u] is in�ni-
tesimal. �

The next aim of the present work is to show that the Bernoullian ring
fR is �su�ciently powerful�, i.e. that for this ring a version of Leibniz's
law holds. As we mentioned above is impossible to have a Bernoullian
ring constructed using an ultrapower B = S/∼U , S ⊆ RN, U a free
ultra�lter on N, where every in�nitesimal is strongly accessible and
where a full Leibnitz's law without limitation holds. Indeed, in that
case we must have S = RN and hence B = ∗R is the usual hyperreal
�eld, where in�nitesimals are only weakly accessible. Therefore, in
the ring fR we must have a limited version of Leibniz's law. This
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is quite natural since to preserve Cauchy sequences only continuous
functions can be extended from R to fR. The aim of the next section
is to clarify this point, where we must introduce also the notion of
continuous relation.

6. Leibniz's law of continuity in fR

To convey the full power of the idea (5.1), we have to go back to
Leibniz. In his introduction of in�nitesimal and in�nite quantities, he
developed a heuristic principle called the �law of continuity�, which
had roots in the work of earlier scholars such as Nicholas of Cusa and
Johannes Kepler. It is the principle that:

What succeeds for the �nite numbers succeeds also for
the in�nite numbers

(see Knobloch [14, p. 67], Robinson [20, p. 266], and Laugwitz [17]).
Kepler had already used it to calculate the area of the circle by rep-

resenting the latter as an in�nite-sided polygon with in�nitesimal sides,
and summing the areas of in�nitely many triangles with in�nitesimal
bases. Leibniz used the law to extend concepts such as arithmetic oper-
ations, from ordinary numbers to in�nitesimals, laying the groundwork
for in�nitesimal calculus.
Of course, a modern mathematical version of this heuristic law de-

pends on our formalization of the word �what� in the law of continuity
as stated above. Recall that in our notations C is the space of Cauchy
sequences of real numbers.

De�nition 7. Let f : Rd → R be a continuous function. Then f ◦
(u1, . . . , ud) ∈ C for every d-tuple of Cauchy sequences u1, . . . , ud ∈ C,
and we can de�ne the extension ∗f by setting

∗f
(
[u1], . . . , [ud]

)
:=
[(
f(u1n, . . . , u

d
n)
)
n∈N

]
∼
∀[u1], . . . , [ud] ∈ fR.

This gives a true extension of f , i.e. ∗f(r1, . . . , rd) = f(r1, . . . , rd)
for every r1, . . . , rd ∈ R (identi�ed with the corresponding constant
sequences).

Theorem 8. Let f , g : Rd → R be continuous functions, then it results

∀x1, . . . , xd ∈ R : f(x1, . . . , xd) = g(x1, . . . , xd) (6.1)

if and only if

∀α1, . . . , αd ∈ fR : ∗f(α1, . . . , αd) =
∗g(α1, . . . , αd) (6.2)

Analogously, we can formulate the transfer of inequalities of the form
f(x1, . . . , xd) < g(x1, . . . , xd).
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Proof. The equality (6.1) implies{
n ∈ N | f(a1n, . . . , adn) = g(a1n, . . . , a

d
n)
}
= N,

where [ak] = αk. The whole set N is dominant, and therefore (6.2)
follows. The converse implication follows from the fact that ∗f and ∗g
extend f and g and from the embedding R ⊂ fR. �

Can Leibniz's law of continuity be proved for more general properties,
e.g. for order relations or disjunctions of equality and inequality or even
more general relations? To solve this problem, we start, once again,
from an historical consideration. Cauchy used in�nitesimals to de�ne
continuity as follows: a function f is continuous between two bounds
if for all x between those bounds, the di�erence f(x + h) − f(x) will
be in�nitesimal whenever h is in�nitesimal. Such a de�nition tends
to bewilder a modern reader, used to thinking of f as being de�ned
for real values of the variable x, but now we can think of f(x + h) as
corresponding to ∗f(x + h). The function f is not necessarily de�ned
on all of R, so that an extension of the real domain D of the function is
implicit in Cauchy's construction. Therefore, we will start by de�ning
such extension of D ⊆ R.

De�nition 9. Let u ∈ C be a Cauchy sequence and D ⊆ R, then
(i) un ∈n D i� the set {n ∈ N |un ∈ D} is dominant.
(ii) fD :=

{
[u] ∈ fR |un ∈n D

}
Let us note that the variable n is mute in the notation un ∈n D.

Using this notation, our questions concerning Leibniz's law of con-
tinuity can be formulated as preservation properties of the operator
f(−). In fact, as in Theorem 8, where equalities between continuous
functions are preserved, we can ask whether f(−) preserves intersec-
tions (i.e. �and�), unions (i.e. �or�), set-theoretic di�erence (i.e. �not�),
inclusions (i.e. �if... then...�), etc. Since we are looking for a mean-
ingful but necessarily weaker version of Leibniz's law in fR, it is also
natural to ask whether the operator f(−) preserves all the logical oper-
ations or not. To this end, it is interesting to note that a minimal set
of extension properties necessarily implies ultra�lter conditions. As we
will see, this is strictly related to the second part of the present work,
where e.g. only the intuitionistic version of negation is preserved.
We will use a circle superscript ◦(−) to indicate a general extension.

Theorem 10. Assume that ◦(−) : P(R) → P(◦R) preserves unions,
intersections and complements, i,.e. for every A, B ⊆ R, we have

◦ (A ∪B) = ◦A ∪ ◦B
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◦ (A ∩B) = ◦A ∩ ◦B

◦ (A \B) = ◦A \ ◦B.
Finally, let e ∈ ◦R. Then

Re := {X ⊆ R | e ∈ ◦X} is an ultra�lter on R,

and if e ∈ ◦N, then

Ne := {X ∩ N |X ∈ Re} is an ultra�lter on N.

Proof. We need �rst to prove that ◦(−) preserves also the empty set
and inclusions. Indeed, ◦∅ = ◦(∅ \ ∅) = ◦∅ \ ◦∅ = ∅. Assume A ⊆ B, so
that A = A ∩B and ◦A = ◦A ∩ ◦B and thus ◦A ⊆ ◦B.
If X, Y ∈ Re, then e ∈ ◦X ∩ ◦Y = ◦(X ∩Y ), and hence X ∩Y ∈ Re.

If X ∈ Re and R ⊇ Y ⊇ X, then e ∈ ◦X ⊆ ◦Y and hence Y ∈ Re.
If X ⊆ R, then R = X ∪ (R \X); but e ∈ ◦R = ◦X ∪ (◦R \ ◦X) and
therefore X ∈ Re or

◦R \ ◦X ∈ Re, and this �nally proves that Re is
an ultra�lter on R.
The proof that Ne is closed with respect to intersection is direct.

Consider N ⊇ S ⊇ X ∩ N with X ∈ Re; then Y := (S \X) ∪X ⊇ X
and hence Y ∈ Re. Therefore, Y ∩ N = S because X ∩ N ⊆ S, and
hence S ∈ Ne. Finally, if S ⊆ N, then either S ∈ Re, and thus S =
S∩N ∈ Ne, or R\S ∈ Re. In the second case, (R\S)∩N = N\S ∈ Ne.
Up to now, we didn't need the further hypothesis e ∈ ◦N. However, in
this case, if X ∈ Re, then e ∈ ◦X ∩ ◦N = ◦(X ∩N) 6= ∅ and hence also
X ∩ N 6= ∅. �

Taking, e.g., e = 1 ∈ fN, yields an ultra�lter.
The meaning of this theorem is the following: if one doesn't like the

idea (5.1) but wants to obtain something corresponding to Leibniz's
law of continuity, one must face the problem that the corresponding
extension operator ◦(−) cannot preserves �and�, �or� and �not� of ar-
bitrary subsets. In section 7, where we will introduce another idea to
re�ne Cauchy's equivalence relation without using ultra�lters, we will
see that a corresponding law of continuity holds, but only for open
subsets, so that we are forced to de�ne a set-theoretical di�erence with
values in open sets

A \B := int(A \B),

where int(−) is the interior operator. Note that the use of open sets
and this �not� operator correspond to the semantics of intuitionistic
logic.
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For the sake of completeness, we also add the following results, which
represents particular cases of the previous Theorem 10.

Corollary 11. In the hypothesis of Theorem 10, if

X ⊆ ◦X , (◦X \X) ∩ R = ∅ ∀X ⊆ R, (6.3)

then we have that e ∈ R if and only if Re is the principal ultra�lter
generated by e, i.e.

Re = {X ⊆ R | e ∈ X} . (6.4)

Proof. Let us assume that e ∈ R and prove the equality (6.4). If
e ∈ X ⊆ R, then e ∈ ◦X because X ⊆ ◦X by hypotheses, and therefore
X ∈ Re. Vice versa if e ∈ ◦X, then ◦X = X ∪ (◦X \X) and hence
e ∈ X because, by hypotheses, (◦X \X) ∩ R = ∅ and e ∈ R.
Finally, the converse implication follows directly from the equality

(6.4) and from R ∈ Re. �

Therefore, if the extension operator ◦X really extends X (�rst con-
dition of (6.3)) adding new non real points (second condition of (6.3)),
then taking e ∈ R we get a trivial ultra�lter. However, in our construc-
tion we started from a free ultra�lter; this is the case considered in the
following

Corollary 12. In the hypothesis of Corollary 11, let us assume that
(◦R,≤) is an ordered set extending the usual order relation on the reals.
Suppose that e ∈ ◦R \ R is an in�nite with respect to (◦R,≤), i.e.

∀N ∈ N : e > N

and also that

∀N ∈ N : e > N ⇒ e ∈ ◦[N,+∞),

then the ultra�lter Ne is free.

For example, the �eld fRfrac veri�es the hypothesis of this corollary
if we take e = [1]

[( 1
n)n]

.

Proof. By our hypothesis, every interval [N,+∞) = {x ∈ R |x ≥ N}
is in Re, therefore [N,+∞) ∩ N ∈ Ne. If X ⊆ N is co�nite, then
N \ X ⊆ [0, N) for some N ∈ N and hence X ⊇ [N,+∞) ∩ N. From
Theorem 10, we have that Ne is an ultra�lter, so that it is closed with
respect to supersets, and hence X ∈ Ne. �

Our operator f(−) has the following preservation properties of propo-
sitional logic operators.
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Theorem 13. Let A, B ⊆ R, then the following preservation properties
hold

(i) f(A ∪B) = fA ∪ fB
(ii) f(A ∩B) = fA ∩ fB
(iii) f(A \B) = fA \ fB
(iv) A ⊆ B if and only if fA ⊆ fB
(v) f∅ = ∅
(vi) fA = fB if and only if A = B.

Proof. For example, we will prove the preservation of unions, the other
proofs being similar. Take [u] ∈ f(A ∪B), then {n |un ∈ A ∪B}
is dominant. If {n |un ∈ A} is dominant, then [u] ∈ fA; if not,
{n |un /∈ A} is dominant and therefore it is also the intersection

{n |un ∈ A ∪B} ∩ {n |un /∈ A} = {n |un ∈ B} ,

so that [u] ∈ fB. Vice versa, if e.g. [u] ∈ fA, then {n |un ∈ A} is
dominant, and hence also the superset {n |un ∈ A ∪B} is dominant,
i.e. [u] ∈ f(A ∪B). �

Example 14. LetA, B , C ⊆ R and write e.g. A(x) to mean x ∈ A.
We want to see that our previous Theorem 13 implies that Leibniz's
law of continuity applies to complicated formulas like

∀x ∈ R : A(x) ⇒ [B(x) and (C(x) ⇒ D(x))] . (6.5)

In other words, we will show how to apply the previous theorem to
show that (6.5) holds if and only if the following formula holds

∀x ∈ fR : fA(x) ⇒
[
fB(x) and

(
fC(x) ⇒ fD(x)

)]
, (6.6)

where e.g. fA(x) means x ∈ fA. In fact, if we assume (6.5), this implies
that A ⊆ B and hence, by Theorem 13, fA ⊆ fB. Therefore, if we
assume fA(x), for x ∈ fR, from this we immediately obtain fB(x). The
hypotheses (6.5) also implies that A ∩ C ⊆ D, so that if we further
assume fC(x) we also obtain that fD(x) holds, and this concludes the
proof of (6.6). Analogously we can prove the opposite implication.

Remark 15. Of course, the previous example can be generalized to every
logical formula, proceeding by induction on the length of the formula,
but this require the usual (simple) background of (elementary) formal
logic. There is a research thread in Nonstandard Analysis (see e.g.
[12, 7, 2, 8]) that tries to limit, as far as possible, the need to have a
background in formal Logic to work with Nonstandard Analysis. In the
present work, we also want to show that a more standard formulation
of Leibniz's law by means of preservation properties of a corresponding
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extension operator like f(−) is possible. This approach does not need
a background knowledge in formal Logic.

Now, the next problem is natural: what about the preservation of
existential and universal quanti�er? We have already considered the
case of logical connectives like �and�, �or�, �not� without stressing too
much on the need to have a background in formal logic. These ideas
could be repeated for the usual hyperreal �eld ∗R and, in our opinion,
permit to simplify the teaching of ∗R and opens this type of setting
to a more general audience, like physicists and engineers. We want to
keep the same thread also for quanti�ers. For this goal we consider two
sets X, Y ⊆ R and the projection pX : X × Y → X, pX(x, y) = x, and
C ⊆ X × Y , i.e. a relation of the form C(x, y) with x ∈ X and y ∈ Y .
We have

pX(C) = {x ∈ X | ∃z ∈ C : x = pX(z)} =
= {x ∈ X | ∃y ∈ Y : C(x, y)} ;

X \ pX [(X × Y ) \ C] = {x ∈ X | ¬ (∃y ∈ Y : (x, y) /∈ C)} =
= {x ∈ X | ∀y ∈ Y : C(x, y)} .

Therefore, now our aim is to prove that f(−) preserves pX(C), which
correspond to existential quanti�er (preservation of universal quanti�er
follows from this and from the preservation of di�erence). Only here we
notice that, exactly as we proceeded for functions considering only the
continuous ones, we need an analogous condition for relations : what is
a continuous relation C ⊆ X×Y ? To �nd the corresponding de�nition,
we start from the idea that if f : R→ R is continuous, then we expect
that the relation {(x, y) ∈ X × Y | y = f(x)} is continuous. We can
therefore note that the peculiarity of the de�nition of the extension ∗f
(see De�nition 7) is that the continuity permits to de�ne ∗f on the
whole fR. Otherwise, we would always had the possibility to de�ne ∗f
on the smaller domain {

[u] ∈ fR | f ◦ u ∈ C
}
.

For this reason, we start to de�ne

De�nition 16. Let X, Y ⊆ R and C ⊆ X × Y , then
fC :=

{
([u], [v]) ∈ fX × fY | (un, vn) ∈n C

}
,

and we start to compare dom(fC) and f[dom(C)].

Theorem 17. In the previous hypothesis, we always have

dom(fC) ⊆ f[dom(C)]
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cod(fC) ⊆ f[cod(C)],

where dom(C) = {x ∈ X | ∃y ∈ Y : C(x, y)} is the domain of C, and
cod(C) = {y ∈ Y | ∃x ∈ X : C(x, y)} is the codomain of C.

Proof. We prove, e.g., the relation about the domains. If [u] ∈ dom(fC),
then there exists v such that ([u], [v]) ∈ fC, i.e. un ∈n dom(C), and this
means that [u] ∈ f[dom(C)]. �

Therefore, it is the opposite inclusion that represents our idea of a
continuous relation.

De�nition 18. In the previous hypothesis, we say that:

(i) C is continuous in the domain i� dom(fC) ⊇ f[dom(C)].
(ii) C is continuous in the codomain i� cod(fC) ⊇ f[cod(C)].

For example, in the case C = graph(f), the continuity in the domain
says that ∗f is de�ned on the whole fX. Analogously, we can de�ne
the continuity of an n-ary relation with respect to its k-th slot.

Theorem 19. If X, Y ⊆ R, and f : X → Y , then f is continuous if
and only if graph(f) is continuous in the domain.

The proof of this theorem can be directly deduced from the following
consideration. The continuity of C in the domain can be written as

∀u ∈ C : un ∈n dom(C) ⇒ ∃y ∈ fY : fC ([u], y) . (6.7)

We can write this condition in a more meaningful way if we use the
notation for a generic property P(n):[

∀dn : P(n)
]

:⇐⇒ {n ∈ N | P(n)} is dominant.

For example, un ∈n D can now be written as ∀dn : un ∈ D. Therefore,
(6.7) can be written as

∀u ∈ C :
(
∀dn∃y ∈ Y : C(un, y)

)
⇒ ∃y ∈ fY : fC([u], y). (6.8)

This can be meaningfully interpreted in the following way: if we are
able to solve the equation

C(un, yn) = true

�nding a solution yn ∈ Y for a dominant set of indices n, then we are
also able to solve the equation

fC([u], y) = true

for a solution y ∈ fY .
Using this formulation, it is not hard to prove that all the relations
=, < and ≤ are continuous both in the domain and in the codomain.
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An expected example of non continuous relation is x · y = 1 (take,
e.g., un := 1

n+1
in (6.8)). This corresponds to the non applicability of

Leibniz's law of continuity to the �eld property

∀x ∈ R : x 6= 0 ⇒ ∃y ∈ R : x · y = 1,

which cannot be transferred to our fR, which is only a ring and not a
�eld.
Now, we can formulate the preservation of quanti�ers:

Theorem 20. Let X, Y ⊆ R and C ⊆ X×Y be a relation continuous
in the domain, then

f[pX(C)] = pfX(
fC).

That is

f{x ∈ X | ∃y ∈ Y : C(x, y)} =
{
x ∈ fX | ∃y ∈ fY : fC(x, y)

}
.

As a consequence we also have

f{x ∈ X | ∀y ∈ Y : C(x, y)} =
{
x ∈ fX | ∀y ∈ fY : fC(x, y)

}
.

Proof. If [u] ∈ f[pX(C)], then un ∈n pX(C), i.e.

∀dn : un ∈ X , ∃y ∈ Y : C(un, y),

that is the set of n ∈ N verifying this relation is dominant. This
implies that un ∈n X and hence [u] ∈ fX and un ∈n dom(C), i.e.
[u] ∈ f[dom(C)]. Our relation C is continuous, so that [u] ∈ dom(fC),
i.e.

∃β ∈ fY : fC([u], β),

which can also be written as [u] ∈ pfX(
fC). To prove the opposite in-

clusion it su�ces to reverse this deduction and use Theorem 17 instead
of the De�nition 18 of continuous relation. �

Example 21. Let us apply our transfer theorems to a sentence of the
form

∀a ∈ A ∃b ∈ B : C(a, b) (6.9)

showing that it is equivalent to

∀a ∈ fA∃b ∈ fB : fC(a, b), (6.10)

where C ⊆ A × B is a binary continuous relation. Assume (6.9) and
a ∈ fA. From (6.9) we have that

A ⊆ {a ∈ R | ∃b ∈ B : C(a, b)} ,
Therefore, by Theorems 13, 20, we have

fA ⊆
{
a ∈ fR | ∃b ∈ fB : fC(a, b)

}
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and we obtain the existence of a b ∈ fB such that fC(a, b). To prove
the opposite implication, it su�ces to revert this deduction.
Considering the example (6.9) we recognize that proving Leibniz's

law in fR for continuous relations, we also solved the problem: for what
type of relations C can we apply Leibniz's law preserving the good
dialectic between potential and actual in�nitesimals we have in the
ring fR? In other words: for what formulae do we have that applying
Leibniz's law we still obtain hyperreal numbers generated by Cauchy's
sequences?

7. A possible approach with nilpotent infinitesimals

Another possible way of re�ning Cantor equivalence relation on real
Cauchy sequences avoiding ultra�lters is to compare two sequences
u, v ∈ C with a basic in�nitesimal, e.g.

(
1
n

)
n
. We therefore set by

de�nition

u ∼ v ⇐⇒ lim
n→+∞

n · (un − vn) = 0. (7.1)

In other words, using Landau's little-oh notation, the two Cauchy se-
quences are to be equivalent if

un = vn + o
(
1
n

)
for n→ +∞.

Like in the previous part of the article, we will denote the equivalence
class of a sequence u simply by [u]. The relation de�ned in (7.1) is
stronger than the usual Cauchy relation:

u ∼ v ⇒ ∃ lim
n→+∞

un = lim
n→+∞

vn =: st([u]) ∈ R.

It is also strictly stronger, because, e.g., the equivalence class
[(

1
np

)
n

]
,

with 0 < p ≤ 1, is a nonzero in�nitesimal. For example, the in�nitesi-
mal

[(
1
n

)
n

]
is not zero, but we can think of it as being so small that its

square is zero:
[(

1
n2

)
n

]
= [0]. With respect to pointwise operations, we

thus obtain a ring rather than a �eld. A ring with nilpotent elements
may seem unwieldy; however, this was surely not the case for geometers
like S. Lie, E. Cartan, A. Grothendieck, or for physicists like P.A.M.
Dirac or A. Einstein (see, e.g., references in [8]). The latter used to
write formulas, if v/c� 1, like

1√
1− v2

c2

= 1 +
v2

2c2
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containing an equality sign rather than an approximate equality sign.
More generally, in [3] A. Einstein wrote

f(x, t+ τ) = f(x, t) + τ · ∂f
∂t

(x, t) (7.2)

justifying it with the words �since τ is very small �. Let us note that
if we apply (7.2) to the function f(x, t) = t2 at t = 0, we obtain
τ 2 = 0 + τ · 0 = 0 and therefore we necessarily obtain that our ring
of scalars contains nilsquare elements. Of course, it is not easy to
state that physicists like A. Einstein or P.A.M. Dirac were conscious to
work with such kind of scalars; indeed, their work, even if sometimes is
lacking from the formal/syntactical point of view, it is always strongly
supported by a dialectic with the physical meaning of the discovered
relationships.
A di�cult point in working with a ring having nilpotent elements is

the concrete management of powers of nilpotent elements, like hi11 · . . . ·
hinn . Let us note that this kind of products appears naturally in several
variables Taylor formulae. Is this product zero or not? Are we able to
decide e�ectively whether it is zero starting from the properties of the
in�nitesimals hj and the exponents ij? To answer positively to this,
and several other questions, we restrict this construction to a particular
subclass of Cauchy sequences:

De�nition 22. We say that u is a little-oh polynomial, and we write
u ∈ Ro

[
1
n

]
i� we can write

un = r +
k∑
i=1

αi ·
1

nai
+ o

(
1

n

)
as n→ +∞, (7.3)

for suitable k ∈ N, r, α1, . . . , αk ∈ R, a1, . . . , ak ∈ R≥0.

Therefore, Ro

[
1
n

]
⊂ C and our previous example

[(
1
np

)
n

]
is generated

by a little-oh polynomial. Little-oh polynomials are closed with respect
to pointwise ring operations, and the corresponding quotient ring

•R := Ro

[
1

n

]
/ ∼

is called ring of Fermat reals. The name is motivated essentially by
two reasons: in the ring of Fermat reals a perfect formalization of the
informal method used by A. Fermat to �nd derivatives is possible, see
[11]; all the theory of Fermat reals and Fermat extensions has been
constructed trying always to have a full dialectic between formal prop-
erties and informal geometrical interpretation: we think that this has
been one of the leading methods used by A. Fermat in his work. In this
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section we will prove only theorems concerning actual and potential in-
�nitesimals and Leibniz's law in •R. For all the other proofs concerning
the presentation of this ring, we refer to [10, 9, 11, 8].
It is not hard to prove that all the numbers k, r, αi, ai appearing in

(7.3) are uniquely determined if we impose them the constraints

0 < a1 ≤ a2 ≤ · · · ≤ ak ≤ 1 (7.4)

αi 6= 0 ∀i = 1, . . . , k. (7.5)

We can hence introduce the following notation

De�nition 23. If x := [u] ∈ •R and k, r, αi, ai are the unique real
numbers appearing in (7.3) and satisfying (7.4) and (7.5), then we set
◦x := st(x) := r, ◦xi := αi, ω(x) :=

1
a1
, ωi(x) :=

1
ai
, Nx := k. Moreover,

we set

dta :=

[(
1
a
√
n

)
n

]
∈ •R ∀a ∈ R≥1

and, more simply, dt := dt1. Using these notations, we can write any
Fermat real as

x = ◦x+
Nx∑
i=1

◦xi · dtωi(x) (7.6)

where the equality sign has to be meant in •R. The numbers ◦xi are
called the standard parts of x and the numbers ωi(x) the orders of x
(for i = 1 we will simply use the names standard part and order for ◦x
and ω(x)). The unique writing (7.6) is called the decomposition of x.

Let us note the following properties of the in�nitesimals of the form
dta:

dta · dtb = dt ab
a+b

( dta)
p = dta

p
∀p ∈ R≥1

dta = 0 ∀a ∈ R<1.

A �rst justi�cation to the name �order� is given by the following

Theorem 24. If x ∈ •R and k ∈ N>1, then xk = 0 in •R if and only
if ◦x = 0 and ω(x) < k.

This motivates also the de�nition of the following ideal of in�nitesi-
mals:

De�nition 25. If a ∈ R ∪ {∞}, then
Da := {x ∈ •R | ◦x = 0 , ω(x) < a+ 1} .
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These ideals are naturally tied with the in�nitesimal Taylor formula
(i.e. without any rest because of the use of nilpotent in�nitesimal
increments), as one can guess from the property

a ∈ N ⇒ Da =
{
x ∈ •R |xa+1 = 0

}
.

Products of powers of nilpotent in�nitesimals can be e�ectively decided
using the following result

Theorem 26. Let h1, . . . , hn ∈ D∞ \ {0} and i1, . . . , in ∈ N, then
(i) hi11 · . . . · hinn = 0 ⇐⇒

∑n
k=1

ik
ω(hk)

> 1

(ii) hi11 · . . . · hinn 6= 0 ⇒ 1

ω(hi11 ·...·h
in
n )

=
∑n

k=1
ik

ω(hk)
.

This result motivates strongly our choice to restrict our construction
to little-oh polynomials only.
The reader can naturally ask what would happen in case of a di�erent

choice of the basic in�nitesimal
(
1
n

)
n
in the De�nition (7.1). Really,

any other choice of a di�erent in�nitesimal (sn)n will conduct to an
isomorphic ring through the isomorphism

◦x+
Nx∑
i=1

◦xi · dtωi(x) 7→

[(
◦x+

Nx∑
i=1

◦xi · s
1

ωi(x)
n

)
n

]
∼

This is the only ring isomorphism preserving the basic in�nitesimals
dta and the standard part function, i.e. such that:

f (α · dta) = α ·
[
( a
√
sn)n

]
∼

f(◦x) = ◦f(x).

Essentially the same isomorphism applies also to the ring de�ned in
[10], where instead of sequences, the construction is based on real func-
tions of the form u : R≥0 → R.

7.1. Order relation. It is not hard to de�ne an intuitively meaningful
order relation on the ring of Fermat reals

De�nition 27. Let x, y ∈ •R be Fermat reals, then we say that x ≤ y
i� we can �nd representatives [u] = x and [v] = y such that

∃N ∈ N ∀n ≥ N : un ≤ vn.

For all the proofs of this section, see e.g. [9, 8].
It is not hard to show that this relation is well de�ned on •R and that

the induced order relation is total. This is another strong motivation
for the choice of little-oh polynomials in the construction of the ring of
Fermat reals. The analogous of Theorem 6 is the following

Theorem 28. Let h ∈ •R, then the following are equivalent
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(i) h ∈ D∞, i.e. ◦h = 0
(ii) ∀n ∈ N>0 : − 1

n
< h < 1

n
, i.e. h is an actual in�nitesimal.

Since if h = [hn] then
◦h = limn→+∞ hn, in

•R every in�nitesimal is
strongly accessible.

Proof. From De�nition 25 it follows directly that h ∈ D∞ i� ◦h = 0.
Since for every representative little-oh polynomial ◦h = limn→+∞ hn,
we have ◦h = 0 i� for all n ∈ N>0 there exists N ∈ N such that for
all k ≥ N the inequalities − 1

n
≤ hk ≤ 1

n
hold. From the de�nition of

order in •R this yields the conclusion. �

Therefore, it is not necessary to use an ultrapower construction to
have a ring where every in�nitesimal is strongly accessible.
The ring of Fermat reals •R is geometrically representable, [9]; it

is also strongly constructive, so that a corresponding computer imple-
mentation is possible, see [12].

7.2. In�nitesimal Taylor formula. What kind of functions f : R→
R can be extended on •R? The idea for the de�nition of extension is
natural •f([u]) := [f ◦ u] so that we have to chose f so that:

(1) If u is a little-oh polynomial, then also f ◦ u is a little-oh poly-
nomial.

(2) If [u] = [v], then also [f ◦ u] = [f ◦ v].
The second condition is surely veri�ed if we take f locally Lipschitz,
but the �rst one holds if f is smooth.

De�nition 29. Let f ∈ C∞(Rd,R) be a smooth function, then

•f([u1], . . . , [ud]) := [f(u1n, . . . , u
d
n)n] ∀[u1], . . . , [ud] ∈ •R.

Therefore, the ring of Fermat real seems potentially useful e.g. for
smooth di�erential geometry (see e.g. chapter 13 of [8]) or in some
part of physics (see e.g. [9]), where one can suppose to deal only with
smooth functions.
In several applications, the following in�nitesimal Taylor formulae

permit to formalize perfectly the informal results frequently appearing
in physics.

Theorem 30. Let x ∈ R and f ∈ C∞(R,R) be a smooth function, then

∃!m ∈ R ∀h ∈ D1 : f(x+ h) = f(x) + h ·m. (7.7)

In this case we have m = f ′(x), where f ′(x) is the usual derivative of
f at x.
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Theorem 31. Let x ∈ Rd, n ∈ N>0 and f ∈ C∞(Rd,R) be a smooth
function, then

∀h ∈ Dd
n : f(x+ h) =

∑
j∈Nd

|j|≤n

hj

j!
· ∂
|j|f

∂xj
(x).

Note that m = f ′(x) ∈ R, i.e. the slope is a standard real number,
and that we can use the previous formula with standard real numbers
x only, and not with a generic x ∈ •R, but it is possible to remove these
limitations (see [11, 9, 8]). For a generalization of these in�nitesimal
Taylor formalae to fractional derivatives, see [12].

8. Leibniz's law of continuity in •R

Is the ring of Fermat reals su�ciently powerful? I.e. is a suitable form
of the Leibniz's law of continuity provable in the ring of Fermat reals?
The �rst version is the transfer for equality and inequality, that can be
proved proceeding like in Theorem 8.

Theorem 32. Let f , g : Rd → R be smooth functions, then we have

∀x1, . . . , xd ∈ R : f(x1, . . . , xd) = g(x1, . . . , xd)

if and only if

∀x1, . . . , xd ∈ •R : •f(x1, . . . , xd) =
•g(x1, . . . , xd).

Analogously, we can formulate the transfer of inequalities of the form
f(x1, . . . , xd) < g(x1, . . . , xd).

Now, we can proceed as for fR. We �rstly de�ne the extension •U of a
generic subset U ⊆ R.

De�nition 33. De�ne the set of little-oh polynomials Uo
[
1
n

]
as in

De�nition 22 but taking sequences u : N → U with values in U and
such that ◦[u] := limn→+∞ un ∈ U . For u, v ∈ Uo

[
1
n

]
de�ne u ∼ v for

un = vn + o
(
1
n

)
as n→ +∞ and •U := Uo

[
1
n

]
/ ∼.

If i : U ↪→ R is the inclusion map, it is easy to prove that its Fermat
extension •i : •U → •R is injective. We will always identify •U with
•i(•U), so we simply write •U ⊆ •R. According to this identi�cation,
if U is open in R, we can also prove that

•U = {x ∈ •R | ◦x ∈ U}. (8.1)

Because of our Theorem 10 we must expect that our extension operator
•(−) doesn't preserve all the operators of propositional logic like �and�,
�or� and �not�. To guess what kind of preservation properties hold for
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this operator we say that the theory of Fermat reals is strongly inspired
by synthetic di�erential geometry (SDG; see, e.g., [11, 15, 1]). SDG
is the most beautiful and powerful theory of nilpotent in�nitesimals
with important applications to di�erential geometry of both �nite and
in�nite dimensional spaces. Its model require a certain knowledge of
Topos theory, because a model in classical logic is not possible. Indeed,
the internal logic of its topos models is necessarily intuitionistic. Fer-
mat reals have several analogies with SDG even if, at the end it is a
completely di�erent theory. For example, in •R the product of any two
�rst order in�nitesimals is always zero, whereas in SDG this is not the
case. On the other hand, the intuitive interpretation of Fermat reals is
stronger and there is full compatibility with classical logic.
This background explain why we will show that our extension op-

erator preserves intuitionistic logical operations. Even if the theory of
Fermat reals can be freely studied in classical logic5, the �most natural
logic� of smooth spaces and smooth functions remains the intuitionistic
one. We simply recall here that the intuitionistic Topos models of SDG
show formally that L.E.J. Brouwer's idea of the impossibility to de�ne
a non smooth functions without using the law of excluded middle or
the axiom of choice is correct.
Because we need to talk of open sets both in R and in •R we have

to introduce the following

De�nition 34. We always think on •R the so-called Fermat topology,
i.e. the topology generated by subsets of the form •U ⊆ •R for U open
in R.

Theorem 35. Let A, B be open sets of R, then the following preser-
vation properties hold

(i) •(A ∪B) = •A ∪ •B
(ii) •(A ∩B) = •A ∩ •B
(iii) •int(A \B) = int(•A \ •B)
(iv) A ⊆ B if and only if •A ⊆ •B
(v) •∅ = ∅
(vi) •A = •B if and only if A = B

Proof. We will use frequently the characterization (8.1). To prove ((i))
we have that x ∈ •(A ∪ B) i� x ∈ •R and ◦x ∈ A ∪ B, i.e. i� ◦x ∈ A
or ◦x ∈ B and, using again (8.1), this happens i� x ∈ •A or x ∈ •B.
Analogously, we can prove ((ii)). We �rstly prove ((iv)). If A ⊆ B and
x ∈ •A, then ◦x ∈ A and hence also ◦x ∈ B and x ∈ •B. Viceversa if
•A ⊆ •B and a ∈ A, then ◦a = a so that a ∈ •B, that is ◦a = a ∈ B.

5More generally, without requiring a background in formal logic.
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To prove ((iii)) we have that x ∈ •int(A \ B) i� ◦x ∈ int(A \ B),
i.e i� (◦x − δ, ◦x − δ) ⊆ A \ B for some δ ∈ R>0. From ((iv)) we
have •(◦x − δ, ◦x − δ) ⊆ •A and x ∈ •(◦x − δ, ◦x − δ). Finally, a
generic y ∈ •(◦x − δ, ◦x − δ) cannot belong to •B because, otherwise,
◦y ∈ (◦x− δ, ◦x− δ)∩B which is impossible. Therefore, x is internal to
•A \ •B with respect to the Fermat topology. The proofs of ((v)) and
((vi)) are direct or follow directly from ((iv)). �

Example 36. Using the previous theorem, we can prove the transfer
of the analogue of (6.5), but where we need now to suppose that A, B,
C are open subsets of R. Therefore, we have

∀x ∈ R : A(x) ⇒ [B(x) and (C(x) ⇒ D(x))]

if and only if

∀x ∈ •R : •A(x) ⇒ [•B(x) and (•C(x) ⇒ •D(x))] .

Once again, we don't strictly need a background of intuitionistic
logic to understand that the preservation of quanti�er for the Fermat
extension •(−) must be formulated in the following way

Theorem 37. Let A, B be open subsets of R, and C be open in A×B.
Let p : (a, b) ∈ A×B 7→ a ∈ A be the projection on the �rst component.
De�ne

•C := {(α, β) | (◦α, ◦β) ∈ C}
∃p(C) := p(C)

∀p(C) := int (A \ ∃p (int ((A×B) \ C))) .
Then

• [∃p(C)] = ∃•p(•C)
• [∀p(C)] = ∀•p(•C).

That is
• {a ∈ A | ∃b ∈ B : C(a, b)} = {a ∈ •A | ∃b ∈ •B : •C(a, b)}
• {a ∈ A | ∀b ∈ B : C(a, b)} = {a ∈ •A | ∀b ∈ •B : •C(a, b)} .

Proof. The preservation of the universal quanti�er follows from that
of the existential quanti�er and from property ((iii)) of 35, so that we
only have to prove • [p(C)] = •p(•C). Consider that the projection is an
open map, so that p(C) is open because C is open in A×B. Therefore
x ∈ • [p(C)] i� ◦x ∈ p(C), and this holds i� we can �nd (a, b) ∈ C
such that ◦x = p(a, b) = a ∈ A. Therefore, •p(x, b) = [(p(xn, b))n] =
[(xn)n] = x and (x, b) ∈ •C because (◦x, b) = (a, b) ∈ C. This proves
that • [p(C)] ⊆ •p(•C). Vice versa, if x ∈ •p(•C), then we can �nd
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(α, β) ∈ •C such that x = •p(α, β) = α. Therefore, (◦α, ◦β) ∈ C and
p(◦α, ◦β) = ◦α = ◦x. This means that ◦x ∈ p(C), which is open and
hence x ∈ •p(C). �

Example 38. Using the previous theorem, we can prove the transfer
of the analogous of Example 21, but where we need now to suppose
that A, B are open subsets of R and C is open in A × B. Therefore,
we have

∀a ∈ A ∃b ∈ B : C(a, b)

if and only if

∀a ∈ •A ∃b ∈ •B : •C(a, b).

The theory of Fermat reals can be greatly developed: any smooth
manifold can be extended with similar in�nitely near points and the
extension functor •(−) has wonderful preservation properties that gen-
eralize what we have just seen on the (intuitionistic) Leibniz's law of
continuity in •R. Potential useful applications are in the di�erential ge-
ometry of spaces of functions, like the space of all the smooth functions
between two manifolds.

9. Conclusion

We have explored two ideas toward re�ning Cauchy's equivalence re-
lation among Cauchy real sequences so as to obtain a new in�nitesimal-
enriched continuum where every in�nitesimal is strongly accessible.
The �rst one takes us toward a subring of the hyperreal �eld of non-
standard analysis, and we sought to motivate all the steps one must
take to arrive at a powerful theory. On the other hand, we have seen
that sometimes the intuitive interpretation of these steps is lacking.
The second idea is intuitively clear but surely formally less powerful.
They serve di�erent scopes because they deal with di�erent kinds of in-
�nitesimals: invertible and nilpotent. In both cases, the goal of having
a good interaction between potential and actual in�nitesimals forces
one to obtain only a reduced version of the Leibniz's continuity law.
Since Cauchy never worked with non-convergent bounded sequences,
our work underscores the fact that interpreting Cauchy's continuum
with the hyperreals ∗R is questionable since in this �eld in�nitesimals
are at best weakly accessible.
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